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Abstract. In this paper the canonical Dirac formalism for time-dependent constrained
Hamiltonian systems is globalized. A time-dependent Dirac bracket which reduces to the usual
one for time-independent systems is introduced.

1. Introduction

The aim of this paper is to globalize the Dirac approach to constrained Hamiltonian
systems [6, 18, 19, 2, 16, 4, 20] by using modern tools of differential geometry. If we
start with a singular time-independent Lagrangian functionL(qA, q̇A) defined on a phase
space of velocitiesTQ, the Hamiltonian energyh1 is well-defined on the submanifold
M1 = Leg(TQ), provided thatL is almost regular. In this case, the canonical formalism
of Dirac [6] proceeds as follows.M1 is defined by the vanishing of some functions (called
primary constraints)φa on T ∗Q, and these primary constraints have to be preserved in
time yielding new (secondary) constraints. Eventually, a final constraint submanifold is
obtained. The Dirac constraint algorithm was globalized by Gotay and Nester [8–10] (see
[4] for a recent review). By using the second-class constraints, one constructs the so-called
Dirac bracket{ , }D, which is a modification of the canonical Poisson bracket{ , } on the
phase spaceT ∗Q. The reason is that the evolution of an observablef is simply written
as ḟ ≈ {f,H }D, for an appropiate prolongationH of h1, and, moreover{ , }D transforms
second-class constraints into Casimir functions. These results are crucial for quantization.
This approach was globalized in a recent paper [14] by using almost product structures.

One may think that the extension of the theory to the time-dependent case is
straightforward, a matter of pure technicalities. However, we realized that the geometry is
more involved. The first point is that one has to use a cosymplectic geometry instead of
a symplectic one, because the evolution of an observable is measured by using a modified
Hamiltonian vector field (called the evolution vector field for obvious reasons). The second
point is that, when we are in the presence of second-class constraints, the corresponding
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Dirac bracket is more involved, and it becomes the usual one if the Lagrangian is time-
independent.

The paper is structured as follows. Sections 2 and 3 are devoted to introducing the
geometrical machinery: cosymplectic and adapted almost product structures and their
associated Dirac brackets. In section 4 we review the constraint algorithm developed in
[5] and [11]. In section 5 we apply the geometrical results to the analysis of a constrained
time-dependent Hamiltonian system. For clarity, we first consider Lagrangians admitting a
global dynamics (where there are no secondary constraints). We obtain the corresponding
Dirac bracket which gives the evolution of an observable (with respect to an appropiate
prolongation of the Hamiltonian function) and transforms second-class constraints into
Casimir functions. Next, we analyse constrained systems with secondary constraints in
section 6 and an example is studied in order to check the effectiveness of our method. In
section 7 the time-independent case is recovered and, in section 8, the Dirac bracket for
affine Lagrangian systems is obtained. The paper is completed by a technical appendix.

2. Cosymplectic vector spaces and manifolds

Let V be a real vector space of dimension 2m+ 1, η a 1-form onV andω a 2-form onV .
Then the triple(V , η, ω) is called a cosymplectic vector space ifη ∧ ωm 6= 0.

If V is a real vector space,η is a 1-form andω is a 2-form onV , we define the linear
map

χη,ω : V −→ V ∗ v −→ χη,ω(v) = ivω + (η(v))η

whereV ∗ is the dual space ofV . We have the following proposition.

Proposition 2.1 ([1]).χη,ω is a linear isomorphism iff either(V , η, ω) is a cosymplectic
vector space in the case whereV is odd dimensional, or(V , ω) is a symplectic vector space
in the case whereV is even dimensional.

Thus, if (V , η, ω) is a cosymplectic vector space then there exists a uniqueR ∈ V such
that η(R) = 1 and iRω = 0. In fact, R = χ−1

η,ω(η). R is called the Reeb vector of the
cosymplectic vector space(V , η, ω).

Let W be a subspace of a cosymplectic vector space(V , η, ω). We define the
orthocomplement ofW in V with respect to(η, ω) as the subspaceW⊥ given by

W⊥ = {v ∈ V/(ivω − η(v)η)|W = 0} . (2.1)

We obtain the following proposition.

Proposition 2.2.If W is a subspace of a cosymplectic vector space(V , η, ω) then dimV =
dimW + dimW⊥ and(W⊥)⊥ = {v − 2η(v)R / v ∈ W }. Moreover, ifW ∩W⊥ = {0}, we
haveV = W ⊕W⊥.

Now, suppose thatM is a smooth(2m + 1)-dimensional manifold.M is said to be
almost cosymplectic if a 1-formη and a 2-formω onM exist such that for allx ∈ M the
triple (TxM, ηx, ωx) is a cosymplectic vector space, whereTxM is the tangent space toM
at x. If the 1-formη and the 2-formω are closed,M is called cosymplectic.

Let (M, η, ω) be an almost cosymplectic manifold. Denote byR the Reeb vector
field of (M, η, ω) and byχη,ω : TM −→ T ∗M the corresponding smooth vector bundle
isomorphism.

By means ofχη,ω one can associate with every functionf ∈ C∞(M) the Hamiltonian
vector fieldXf which is defined by (see [1, 3]):

Xf = χ−1
η,ω(df − R(f )η) ⇐⇒ iXf η = 0 iXf ω = df − R(f )η . (2.2)



Constrained time-dependent Hamiltonian systems 6845

Furthermore, the gradient vector field gradf and the evolution vector fieldEf are given
by

gradf = R(f )R +Xf Ef = R +Xf . (2.3)

If (M, η, ω) is a cosymplectic manifold, there exists onC∞(M) a Poisson bracket
defined by{f, g} = ω(Xf ,Xg). The symplectic leaves of this Poisson structure are precisely
the leaves of the integrable distribution kerη (see [1]). It should be noted that

Ef (g) = R(g)+ {g, f }
gives the evolution ofg with respect to the Hamiltonian functionf . So, in order to get the
evolution of an observable we need a Poisson bracket and a vector field.

3. Almost product structures adapted to precosymplectic structures

An almost product structure on a manifoldM is a tensor fieldF of type (1, 1) onM such
that F 2 = id. The manifoldM will be called an almost product manifold [15]. If we
set A = 1

2(id + F), B = 1
2(id − F), then A and B are complementary projectors, i.e.

A + B = id, A2 = A, B2 = B, AB = BA = 0. We denote byImA and ImB the
corresponding complementary distributions. HenceTM = ImA ⊕ ImB. We denote byA∗

andB∗ the transpose operators, andImA∗ andImB∗ will be their corresponding images.
Next, we will introduce the notion of almost product structure adapted to an almost

precosymplectic structure. First, let us recall the definition of almost precosymplectic
structure (see [5]).

Definition 3.1.Let M be a manifold,η a 1-form andω a 2-form onM. The pair(η, ω) is
said to be an almost precosymplectic structure onM if η∧ωr 6= 0 andωr+1 = 0. Moreover,
if η andω are closed then the pair(η, ω) is called a precosymplectic structure.

Remark 3.2.If (η, ω) is an almost precosymplectic structure onM then there exists at least
a vector fieldR onM such thatη(R) = 1 andiRω = 0 (see [5]).

Definition 3.3.Let (η, ω) be an almost precosymplectic structure on a manifoldM andR
a vector field such thatη(R) = 1 andiRω = 0. An almost product structure(A,B) onM
is said to be adapted to the triple(η, ω,R) if

kerω ∩ kerη = kerA R = A(R) .
Remark 3.4.An almost product structure(A,B) is adapted to the triple(η, ω,R) if and
only if

kerω = ker(A − η ⊗ R) A∗η = η .

Moreover, if F̄ is the (1, 1)-tensor field onM given by F̄ = A − B − η ⊗ R, a direct
computation proves that̄F 2 = id−η⊗R. Thus, the triple(F̄ , η,R) is an almost paracontact
structure onM (see [17]).

Let (A,B) be an almost product structure onM adapted to a triple(η, ω,R). Consider
the linear mappingχη,ω : X(M) −→ 31(M) defined by

χη,ω(X) = iXω + (η(X))η .

Thus,χη,ω(R) = η, andχη,ω induces an isomorphism ofC∞(M)-modulesχη,ω : ImA −→
ImA∗.
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Usingχη,ω one can associate with every functionf ∈ C∞(M) anA-Hamiltonian vector
field X(f,A) which is given by

X(f,A) = χ−1
η,ω(A∗(df )− R(f )η) ∈ ImA (3.1)

or, equivalently,

X(f,A) ∈ ImA iX(f,A)ω = A∗(df )− R(f )η iX(f,A)η = 0 . (3.2)

Also, theA-gradient vector field(gradf )A and theA-evolution vector fieldE(f,A) are
given by

(gradf )A = R(f )R +X(f,A) E(f,A) = R +X(f,A) . (3.3)

Now, we define a bracket of functions as follows:

{f, g}A = ω(X(f,A), X(g,A)) (3.4)

wheref, g ∈ C∞(M); { , }A satisfies all the properties of a Poisson bracket except the
Jacobi identity. Moreover, ifĀ andB̄ are given byĀ = A− η⊗R, B̄ = B + η⊗R, it is
clear that the pair(Ā, B̄) is an almost product structure adapted to the almost presymplectic
2-formω and the bracket of functions onM defined by the almost product structure(Ā, B̄)
is just { , }A. Thus, using the results for presymplectic structures in [7, 14], we have the
following proposition.

Proposition 3.5.Let (η, ω) be an almost precosymplectic structure onM and R a vector
field such thatiRω = 0 andiRη = 1. Suppose that the 2-formω is closed and that(A,B) is
an almost product structure adapted to the triple(η, ω,R). Then the bracket{ , }A defined
by the almost product structure satisfies the Jacobi identity if and only if the almost product
structure(Ā, B̄) is integrable, whereĀ = A − η ⊗ R and B̄ = B + η ⊗ R.

In this case, ifH is a Hamiltonian function onM we haveE(H,A)(f ) = R(f )+{f,H }A,
for an observablef . Thus,ḟ = R(f )+{f,H }A is the evolution off provided thatE(H,A)
gives the dynamics. The point is to construct a suitable adapted almost product structure.

4. The constraint algorithm

LetQ be am-dimensional manifold and denote byτQ : TQ −→ Q the canonical projection.
If (qA), 1 6 A 6 m, are local coordinates on a neighbourhoodU of Q, we denote by
(qA, q̇A), 1 6 A 6 m, the induced coordinates onT U . Q will be the configuration manifold
for a time-dependent Lagrangian system with Lagrangian functionL : R × TQ −→ R. If
the Hessian matrix(

∂2L

∂q̇A∂q̇B

)
is regular,L is called regular, and singular or degenerate otherwise. The energy function
associated withL is defined byEL = CL−L, whereC is the Liouville vector field onTQ.
The Poincaŕe–Cartan 1-form and 2-form are respectively defined byαL = J ∗(dL)− ELdt
and �L = −dαL, where t is the standard coordinate onR. Here, J is the natural
extension toR × TQ of the canonical almost tangent structure ofTQ. We define a 2-
form ωL = −d(J ∗(dL)) such that�L = ωL + dEL ∧ dt .

If L is regular, the pair(dt, ωL) is a cosymplectic structure whose Reeb vector field is
denoted byRL. Thus, the equations

iXωL = dEL − RL(EL)dt iXdt = 1 ⇐⇒ iX�L = 0 iXdt = 1 (4.1)
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have a unique solutionξL which is a time-dependent second-order differential equation
(NSODE, for simplicity, i.e.JξL = C andiξLdt = 1); ξL will be called the Euler–Lagrange
vector field forL. In fact, the solutions ofξL are just the solutions of the Euler–Lagrange
equations forL (see [15, 3, 5]).

If L is singular, we will assume that the pair(dt, ωL) is a precosymplectic structure on
R × TQ. In this case, equations (4.1) have no solution, in general, and even if it exists it
will be neither unique nor a second-order differential equation.

Remark 4.1.We note that ifL′ : TQ −→ R is a time-independent Lagrangian function and
defineL : R × TQ −→ R by L(t, qA, q̇A) = L′(qA, q̇A), we deduce that the pair(dt, ωL)
is a precosymplectic structure if and only ifωL′ is presymplectic, whereωL′ = −d(J ∗(dL′))
is the Poincaŕe–Cartan 2-form onTQ (see section 7).

The Legendre mapLeg : R×TQ −→ R×T ∗Q is locally written asLeg(t, qA, q̇A) =
(t, qA, pA), where pA = ∂L/∂q̇A are the generalized momenta. In what follows, we
will suppose thatL is almost regular, i.e.M1 = Leg(R × TQ) is a submanifold of
R × T ∗Q andLeg : R × TQ −→ M1 is a submersion with connected fibres (this implies
that the rank of the Hessian matrix is constant and it is equal to dimM1 − (m + 1)).
The submanifoldM1 will be called the primary constraint submanifold. We have that
kerT Leg = kerωL ∩ V (R × TQ) = ker�L ∩ V (R × TQ), whereV (R × TQ) is the
vertical bundle of the canonical projectioñτQ : R × TQ −→ R × Q. SinceL is almost
regular, the energyEL is constant along the fibres ofLeg and, therefore,EL projects onto
a functionh1 onM1, i.e. h1(Leg(x)) = EL(x), for all x ∈ R × TQ (see [5, 11]).

Denote byωQ the canonical symplectic form onT ∗Q. Since the pair(dt, ωQ) is a
cosymplectic structure onR×T ∗Q, it defines a Poisson bracket{ , } onR×T ∗Q. Moreover,
if i : M1 −→ R × T ∗Q is the natural embedding ofM1 into R × T ∗Q, ω1 = i∗ωQ and
η1 = i∗dt then, sinceLeg1 : R × TQ −→ M1 is a submersion andLeg∗

1ω1 = ωL and
Leg∗

1η1 = dt , we deduce that(η1, ω1) is a precosymplectic structure onM1. If we put
�1 = ω1 + dh1 ∧ η1, the Hamilton equations of the motion onM1 are

iX�1 = 0 iXη1 = 1 ⇐⇒ iXω1 = dh1 − R1(h1)η1 iXη1 = 1 (4.2)

whereR1 is a vector field onM1 such thatiR1ω1 = 0, iR1η1 = 1. (Note that there are
many choices forR1). However, in general, equations (4.2) have no solution.

If k is the rank of the Hessian matrix, there existm−k independent constraintsφa which
describeM1. The functionsφa were called by Dirac primary constraints. IfH is an arbitrary
extension ofh1 to R×T ∗Q, all the Hamiltonian functions of the form̃H = H +∑

a λaφ
a,

whereλa are Lagrange multipliers, are weakly equal, i.e.H̃|M1 = H|M1 = h1. The Hamilton
equations of the motion are written in terms of the canonical Poisson bracket onR × T ∗Q
as follows:

dqA

dt
= {qA, H̃ } dpA

dt
= {pA, H̃ } φa = 0 .

Thus, there is an ambiguity in the description of the dynamics.
Let �H̃ be the 2-form onR × T ∗Q given by�H̃ = ωQ + dH̃ ∧ dt . A solution of

the equations of motioniX�H̃ = 0, iXdt = 1 always exists. In fact,X is the evolution
vector fieldEH̃ associated with the functioñH with respect to the canonical cosymplectic
structure(dt, ωQ) on R × T ∗Q. Since the constraints must be preserved in the time, i.e.
(EH̃ )|M1 must be tangent toM1 we get

∂φb

∂t
+ {φb,H } +

∑
a

λa{φb, φa} ≈ 0 (4.3)
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i.e. (∂φb/∂t + {φb,H } + ∑
a λa{φb, φa})|M1 = 0. The vanishing of these expresions can

lead two kinds of consequences: some of the arbitrary functionsλa may be determined or
new constraints may arise. These new constraints are called secondary constraints. The
primary and secondary constraints define the submanifoldM2. Now, we can proceed in a
similar way with the secondary constraints, because they should also be preserved in time.
This process may be continued and the initial problem is solvable if we arrive at some
final constraint submanifoldMf where consistent solutions exist. It is possible to give a
classification of the constraints generated by this algorithm in order to clarify the ambiguity
of the dynamics. A constraintφ of Mi (the i-ary constraint submanifold) is said to be first
class if{φ, φa} ≈ 0 for each constraintφa of Mi . Otherwise,φ is said to be second class.

This constraint algorithm was globalized in [5] and [11]. In fact, equations (4.2) suggest
that we should consider the following general situation.

Let (η, ω) be a precosymplectic structure on a manifoldS, R a vector field such that
iRω = 0, iRη = 1, andh a real differentiable function. Consider the points ofS where the
equations

iXω = dh− R(h)η iXη = 1 (4.4)

have a solution and suppose that this setS2 is a submanifold ofS. Nevertheless, the
solutions of (4.4) onS2 are not necessarily tangent toS2. Hence, we take the points of
S2 on which there exists a solution which is tangent toS2. Thus, a new submanifoldS3

is obtained and the process may be continued. Note that the tangency condition is the
geometrical translation of the preservation of the constraints. We have the sequence of
submanifolds· · · −→ Sk −→ · · · −→ S2 −→ S1 = S. Alternatively, these submanifolds
can be described as follows:

Si = {x ∈ Si−1/(dh+ (1 − R(h))η)x(v) = 0 ∀v ∈ T ⊥
x Si−1}

where

T ⊥
x Si−1 = {v ∈ TxS/(ivωx − ηx(v)ηx)|TxSi−1 = 0} .

We callS2 the secondary constraint submanifold,S3 the tertiary constraint submanifold,
and, in general,Si is the i-ary constraint submanifold. If the algorithm stabilizes, i.e.
there exists a positive integerk such thatSk = Sk+1 and dimSk > 0, we obtain a final
submanifoldSf such that a solutionX on Sf exists, i.e.X is a vector field onSf satisfying
(iXω = dh− R(h)η, iXη = 1)|Sf .

This algorithm can be applied when we consider the particular system(M1, η1, ω1, h1,

R1). Moreover, ifRL is a vector field onR × TQ which isLeg1-projectable on the vector
field R1, the systems(R × TQ, dt, ωL,EL,RL) and (M1, η1, ω1, h1,R1) are equivalent
and they are related by the Legendre transformation (see [5, 11]).

5. Lagrangian systems with a global dynamics

Assume that the precosymplectic system(R × TQ, dt, ωL,EL) admits a global dynamics,
i.e. there exists at least a vector fieldξ on R × TQ such thatξ satisfies the equations of
motion: iξ�L = 0, iξdt = 1. In such a case, the submanifoldM1 = Leg(R × TQ) is the
final constraint submanifold and there are no secondary constraints.

We denote by8a, 1 6 a 6 s, the second-class constraints and byφi , 1 6 i 6 p, the
first-class constraints. The matrix̃C whose entries arẽCab = {8a,8b} is non-singular on
M1 (see [19, 20]) and, for simplicity, we will assume thatC̃ is non-singular onR × T ∗Q.
Thus, s is even, says = 2r. The determinant of the matrix̃C is equal to the determinant
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of the matrix C with entriesCab = {8a,8b} + (∂8a/∂t)∂8b/∂t = (grad8b)(8a) (see
appendix A for a proof of this). Therefore, the matrixC is also non-singular and we will
denote by(Cab) its inverse matrix.

Since{φi,8a} ≈ 0 and{φi, φj } ≈ 0 for all 1 6 j 6 p and 16 a 6 s , we have that
(Xφi )|M1 is tangent toM1 for all 1 6 i 6 p. Consequently, ifR̃1 is a vector field onM1

such thatiR̃1
ω1 = 0 andη1(R̃1) = 1, we deduce that

0 = (iR̃1
ω1)((Xφi )|M1) = −(iXφi ωQ)|M1(R̃1) = −(dφi)|M1(R̃1)

+
(
∂φi

∂t

)
|M1

dt|M1(R̃1) =
(
∂φi

∂t

)
|M1

η1(R̃1) =
(
∂φi

∂t

)
|M1

. (5.1)

In particular,(gradφi)|M1 = (Xφi )|M1 for all i.
Now, let D (D̄) be the distribution onR × T ∗Q generated by the vector fields

grad8a (grad8a and gradφi). Denote byD⊥(x) (D̄⊥(x)) the orthocomplement of the
subspaceD(x) (D̄(x)) in the cosymplectic vector space(Tx(R × T ∗Q), dt (x), ωQ(x))
for all x ∈ R × T ∗Q. If x1 is a point of M1, from equations (2.1), (2.2), (2.3),
(5.1) and proposition 2.2, we obtain thatD̄⊥(x1) = Tx1M1 and T ⊥

x1
M1 = (D̄⊥)⊥(x1) =〈(

X8a − (∂8a/∂t)∂/∂t
)
(x1), Xφi (x1)

〉
. Moreover, if x is a point of R × T ∗Q, since the

matrix C is non-singular, we have thatD(x)∩D⊥(x) = {0} and, thus, from proposition 2.2,
we conclude thatTx(R × T ∗Q) = D(x)⊕D⊥(x).

Let Q : D ⊕D⊥ −→ D be the projection onD alongD⊥, and putP = id − Q. The
projectorQ is explicitly given by

Q =
∑
a,b

Cab grad8a ⊗ d8b . (5.2)

Using the fact that the pair(η1, ω1) is a precosymplectic structure onM1 and the fact that
the matrixC is regular, we deduce that

kerω1 ∩ kerη1 = T ⊥M1 ∩ TM1 = (D̄⊥)⊥|M1
∩ TM1 = 〈(Xφi )|M1〉 . (5.3)

Next, we consider onR × T ∗Q the 1-formη and the vector fieldR defined byη = P∗(dt)
and R = P(∂/∂t). It is clear thatR(8b) = 0 for all b. Moreover, using equations (5.1)
and (5.2), we obtain thatR|M1(φ

i) = 0 for all i and, therefore the restrictionR1 of R to
M1 is tangent toM1.

A direct computation using the definition ofD⊥ (see equation (2.1)) and the fact that
i ∂
∂t
ωQ = 0 proves thatP∗(iRωQ) = (1 − dt (R))η. In particular, dt (R) = 1 or dt (R) = 0.

Now, if dt (R) = 0, we getP∗(iRωQ) = η. But it is not possible sinceR1 is tangent to
M1 and there exists a vector field̃R1 onM1 such thatiR̃1

ω1 = 0, iR̃1
η1 = 1. Thus

dt (R) = 1 (5.4)

which implies that

iRωQ = Q∗(dt) . (5.5)

From equations (5.4) and (5.5), we obtain thatiR1ω1 = 0 andiR1η1 = 1.
Let ω be the 2-form onR×T ∗Q defined byω = P̄∗ωQ, whereP̄ = P −η⊗R. Using

remark 3.4, and equations (5.4) and (5.5), we have the following proposition.

Proposition 5.1.(i) The pair(η, ω) is an almost precosymplectic structure onR×T ∗Q and
iRω = 0, η(R) = 1. (ii) The almost product structure(P,Q) on R × T ∗Q is adapted to
the triple(η, ω,R).
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Now, using proposition 5.1, we can define the corresponding bracket of functions{ , }D

on R × T ∗Q. In order to obtain an expression for the bracket{ , }D we will first show that

P̄(XF ) = X(F,P) (5.6)

for all F ∈ C∞(R × T ∗Q). In fact, from equations (5.4) and (5.5), we have that

iP̄XF ω = P∗
(

dF −
(
∂F

∂t
− Q∗(dt)(XF )

)
dt

)
= P∗(dF − R(F )η) iP̄XF η = 0

(5.7)

which proves (5.7). Consequently, using equations (5.5) and (5.7), we conclude that

{F,G}D = ω(X(F,P), X(G,P)) = {F,G} −
∑
a,b

Cab{8b,G}{F,8a}

−
∑

a,b,a′,b′
CabCa′b′ {8b, F }{8b′

,G}∂8
a

∂t

∂8a′

∂t

for all F,G ∈ C∞(R×T ∗Q). From equation (5.4), we obtain thatP̄X8a = 0, for 16 a 6 s,
which implies that{F,8a}D = 0 for F ∈ C∞(R × T ∗Q) (see equation (5.7)). Thus, the
second-class constraints are Casimir functions for the bracket{ , }D. Furthermore, ifφ is a
constraint function then, it is clear that{φ, φi}D ≈ 0, for 16 i 6 p.

The bracket{ , }D is called the time-dependent Dirac bracket onR × T ∗Q. Note that
if F,G ∈ C∞(T ∗Q) and the constraints8a do not depend oft then {F,G}D is the usual
Dirac bracket onT ∗Q. Moreover, if Q̄ = Q + η ⊗ R and the almost product structure
(P̄, Q̄) is integrable, then the 2-formω is closed and, from proposition 3.5, we deduce that
{ , }D is actually a Poisson bracket onR × T ∗Q.

Let H be an arbitrary extension ofh1 to R × T ∗Q. We have the following theorem.

Theorem 5.2.If EH is the evolution vector field associated withH with respect to the
canonical cosymplectic structure(dt, ωQ) on R×T ∗Q andE(H,P) is theP-evolution vector
field associated withH , then

E(H,P) = R + P̄(XH ) = (1 − η(XH))R + P(XH ) (5.8)

and the restriction ofE(H,P) to M1 is tangent toM1 and it is a solution of the equations of
motion.

Proof. From equations (3.3) and (5.7), we obtain equation (5.8) directly.
Next, from (5.4) we have

dt (E(H,P)) = 1 . (5.9)

Furthermore, if X is a vector field onM1, (iE(H,P)Q̄∗ωQ)|M1(X) = 0 and, using
equations (3.2) and (3.3), we get

(iE(H,P)ωQ)|M1(X) = (iE(H,P)ω)|M1(X) = (dh1 − R1(h1)η1)(X) . (5.10)

Let ξ1 be a global solution of the equations of motion. Using equations (5.9) and (5.10),
we obtain that

(E(H,P) − ξ1)(x1) ∈ T ⊥
x1
M1 = (D̄⊥)⊥(x1) =

〈(
X8a − ∂8a

∂t

∂

∂t

)
(x1), (Xφi )(x1)

〉
for all x1 ∈ M1. Now, since(E(H,P))|M1(8

b) = ξ1(8
b) = 0, for all b, we conclude that

(E(H,P) − ξ1)(x1) ∈ 〈(Xφi )(x1)〉 ⊆ Tx1M1 for all x1 ∈ M1. This shows that(E(H,P))|M1 is
tangent toM1 which concludes the proof of our result. �
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If F ∈ C∞(R × T ∗Q) then, using thatE(H,P)(F ) = R(F )+ {F,H }D, we deduce that
the evolution of the observablef = F|M1 is given byḟ = R1(f )+ ({F,H }D)|M1.

From equations (5.2), (5.4) and (5.8), we also have that

E(H,P) = ∂

∂t
+XH −

∑
a,b

Cab{8b,H }X8a −
∑
a,b

Cab ∂8
b

∂t

(
1 +

∑
a′,b′

Ca′b′ {8b′
, H }∂8

a′

∂t

)
X8a .

By a straightforward computation we obtain the result that(E(H,P))|M1 is precisely the vector
field (EH̃ )|M1 whereH̃ is the Hamiltonian function defined from (4.3), i.e.

H̃ = H −
∑
a,b

C̃ab
(
∂8b

∂t
+ {8b,H }

)
8a .

Now, in order to fix the gauge, we consider an almost product structure(A1,B1) adapted to
the triple (η1, ω1,R1). Thus, if ξ1 is a solution of the equations of motion onM1, we can
select a unique solutionA1(ξ1) such thatA1(ξ1) ∈ ImA1. In particular, ifH is an arbitrary
extension ofh1, ξ1 = (E(H,P))|M1 is a solution of the equations of motion onM1, and we fix
the gauge by takingA1(ξ1) = A1((E(H,P))|M1) = R1 +A1(P̄(XH )|M1) (see equation (5.8)).
We also have the corresponding bracket of functions{ , }A1 on M1 which is a Poisson
bracket if the almost product structure(Ā1, B̄1) is integrable, whereĀ1 = A1 − η1 ⊗ R1

and B̄1 = B1 + η1 ⊗ R1.
The above results are summarized in table 1.

Table 1. First- and second-class primary constraints.

R� T �Q R� T �Q M1

 
dt; !Q;

@

@t

!

f ; g

(�; !;R)

f ; gD

(P;Q)

(�1; !1;R1)

f ; gA1

(A1;B1)

Next, we will study two particular cases:

1. All the primary constraints are second class.In this case, using equation (5.3) and
proposition 2.1, we deduce that the pair(η1, ω1) is a cosymplectic structure onM1 and
R1 is the Reeb vector field. Moreover, there exists a unique solutionξ1 of the equations
of motion iξ1ω1 = dh1 − R1(h1)η1, iξ1η1 = 1. In fact, ξ1 is the evolution vector for
the functionh1 : M1 −→ R with respect to the cosymplectic structure(η1, ω1). On the
other hand, if the almost product structure(P̄, Q̄) is integrable and onM1 we consider the
Poisson bracket{ , }1 defined by the cosymplectic structure(η1, ω1), and onR × T ∗Q the
Dirac bracket{ , }D, which is also a Poisson bracket, we get that the canonical embedding
i : M1 −→ R × T ∗Q is a Poisson morphism. This result follows using the fact that if
F is a C∞-function onR × T ∗Q andf is the restriction ofF to M1 then (X(F,P))|M1 is
the Hamiltonian vector fieldXf with respect to the cosymplectic structure(η1, ω1) (see the
proof of theorem 5.2).
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2. All the primary constraints are first class.In this case,η = dt , ω = ωQ, R = ∂/∂t , and,
if H is an arbitrary extension toR×T ∗Q of h1, thenξ1 = (E(H,P))|M1 = (EH )|M1 is tangent
to M1, and it is a solution of the equations of motion. Furthermore, the classical procedure
consists in choosing functionsf j , 1 6 j 6 p, onT ∗Q such that the matrix{f i, φj } = (cij )

is regular. The determinant of this matrix is called the Faddev–Popov determinant. Then,
if H is an arbitrary extension ofh1 : M1 → R, H̃ = H + ∑

i λiφ
i and we impose the

tangency of the evolution vector fields of the Hamiltonian functionsH̃ to the submanifold
defined by the constraints{f j }, we get thatλi ≈ (

∑
j cij {H, f j }), (cij ) being the inverse

matrix of (cij ). Thus, we have fixed the gauge. But the above construction is equivalent
to take an almost product structure(A,B) on R × T ∗Q given byB = ∑

i,j cijXφi ⊗ df j

and A = id − B. The almost product structure(A,B) restricts onM1 and its restriction
(A1 = A|M1,B1 = B|M1) is adapted to the triple(η1, ω1,R1). Moreover, the solution of the
equations of motion onM1 obtained using the classical procedure is just theA1-evolution
vector field associated with the functionh1 : M1 → R.

6. Lagrangian systems with secondary constraints

We denote by8a, 1 6 a 6 s, the primary second-class constraints and byφi , 1 6 i 6 p,
the primary first-class constraints.

By applying the constraint algorithm to the precosymplectic system(M1, η1, ω1, h1) we
obtain a sequence of submanifolds

Mf −→ · · · −→ Mk −→ Mk−1 −→ · · · −→ M2 −→ M1 −→ R × T ∗Q.

Assume that the algorithm stabilizes, i.e. there exists a positive integerk such that
Mk+1 = Mk and dimMk > 0. Suppose thatMf is the final constraint submanifold. We
will call each constraint which is not primary a secondary constraint. The final constraint
submanifoldMf will be determined by all the primary and secondary constraints. We
denote by8̄b, 1 6 b 6 s̄, the secondary second-class constraints and byφ̄j , 1 6 j 6 p̄,
the secondary first-class constraints. The primary second-class constraints ofM1 are also
second class onMf but the primary first-class constraints may be first or second class on
Mf . Then we can suppose thatφi

′
, 1 6 i ′ 6 p′, are primary first-class constraints which

are also first class onMf andφi
′′
, 1 6 i ′′ 6 p′′, are primary first-class constraints which

are second class onMf , wherep′ + p′′ = p. As in section 5, we will assume that there
exists at least a vector field̃Rf onMf such thatiR̃f

(ω1)|Mf
= 0 and(η1)|Mf

(R̃f ) = 1 (note
that in section 5Mf = M1).

We denote by{χα} the set of all the second-class constraints onMf . Then, the pair
(P,Q) is an almost product structure onR × T ∗Q, where

Q =
∑
α,β

Cαβ gradχα ⊗ dχβ P = id − Q

(Cαβ) being the inverse matrix of
({χα, χβ} + (∂χα/∂t)∂χβ/∂t

)
. The restrictionR1 (Rf )

of the vector fieldR = P(∂/∂t) to M1 (Mf ) is tangent toM1 (Mf ) and the almost product
structure(P,Q) is adapted to the triple(η, ω,R), with η = P∗(dt), ω = P̄∗(ωQ) and
P̄ = P−η⊗R. The vector fieldRf satisfies the relations:iRf

(ω1)|Mf
= 0, (η1)|Mf

(Rf ) = 1.
As in section 5, we also define a Dirac bracket by

{F,G}D = ω(X(F,P), X(G,P))

= {F,G}−
∑
α,β

Cαβ{χβ,G}{F, χα}−
∑

α,β,α′,β ′
CαβCα′β ′ {χβ, F }{χβ ′

,G}∂χ
α

∂t

∂χα
′

∂t
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for all F,G ∈ C∞(R × T ∗Q).
Now, if H is an arbitrary extension ofh1 to R × T ∗Q, the restriction toMf of the

P-evolution vector fieldE(H,P) = R + P̄(XH ) is tangent toMf and is a solution of the
equations of motion

(i(E(H,P))ω1 = dh1 − R1(h1)η1, i(E(H,P))η1 = 1)|Mf
.

In order to fix the gauge, we consider an almost product structure((A1)f , (B1)f ) on
Mf which is adapted to the distribution̄Df = kerω1 ∩ kerη1 ∩ TMf , i.e. ker(A1)f = D̄f
and such that(A1)f (Rf ) = Rf . Then, we fix the gauge by taking(A1)f ((E(H,P))|Mf

) =
Rf + (A1)f ((P̄XH)|Mf

).
Next, suppose that we apply the constraint algorithm to the precosymplectic system

(R × TQ, dt, ωL,EL) in order to solve the equations of motion (4.1). We obtain a final
constraint submanifoldPf in such a way that the restriction toPf of the submersion
Leg1 : R × TQ −→ M1 is a surjective submersionLegf : Pf −→ Mf of Pf ontoMf .
Moreover, if ξf is a solution of the equations of motion onPf which isLegf -projectable
onto a vector field(ξ1)f in Mf , then(ξ1)f is a solution of the equations of motion onMf

and, conversely (see [5, 11]).
Now, let RL be a vector field onR × TQ which isLeg1-projectable ontoR1. Since

the distribution kerT Leg1 restricts toPf (see [5, 11]) we deduce that the restriction(RL)f
to Pf of RL is tangent toPf , i(RL)f (ωL)|Pf = 0 andi(RL)f (dt)|Pf = 1.

Consider an almost product structure(Ãf , B̃f ) on Pf adapted to the distributioñDf =
kerωL ∩ ker dt ∩ T Pf and such that it isLegf -projectable onto an almost product structure
((A1)f , (B1)f ) on Mf , and (Ãf )((RL)f ) = (RL)f (note that such an almost product
structure always exists). Then, the almost product structure((A1)f , (B1)f ) is adapted to the
distribution D̄f , and(A1)f (Rf ) = Rf . Furthermore, ifH is an extension toR × T ∗Q of
h1 andX̃f is a vector field onPf which isLegf -projectable onto(X(H,P))|Mf

= (P̄XH)|Mf
,

we can select a unique solutionξ = Ãf ((RL)f + X̃f ) = (RL)f + Ãf (X̃f ) ∈ ImÃf of the
equations of motion

(iξωL = dEL − RL(EL)dt, iξdt = 1)|Pf

and ξ is Legf -projectable onto the solutionξ ′ = Rf + (A1)f ((P̄XH)|Mf
) =

(A1)f ((E(H,P))|Mf
).

Remark 6.1.In general, the solutionξ does not satisfy the NSODE condition onPf , i.e.
(J ξ = C)|Pf . However, there exists a smooth sectionα : Mf −→ Pf of the submersion
Legf : Pf −→ Mf and a unique vector fieldξS on the submanifoldS = α(Mf ) such that
(see [5, 11]):
(i) ξS is a solution of the equations of motion:(

iξSωL = dEL − RL(EL)dt, iξSdt = 1
)
|S (6.1)

(ii) ξS verifies the NSODE condition:

(J (ξS) = C)|S .

If we transport viaα the almost product structure((A1)f , (B1)f ) to S, we obtain an almost
product structure(AS,BS) on S, which is adapted to kerωL ∩ ker dt ∩T S and such that the
projection byAS of any solutionX of the equations of motion (6.1) is also a solution of
these equations; moreover,AS(X) = ξS , and, then, it verifies the NSODE condition.
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Remark 6.2.Since the map(T Legf )|D̃f : D̃f −→ D̄f is surjective and kerT Legf =
(kerT Leg1)|Pf ⊆ D̃f , we deduce that

dimD̃f = dimD̄f + dim kerT Leg1 = dimD̄f + (m− k)

wherek is the rank of the Hessian matrix.

Table 2 summarizes the results of this section.

Table 2. Primary and secondary constraints.

R� TQ

Pf

S

Mf

(dt; !L;RL)

( ~Af ; ~Bf)

ker ~Af = ker!L \ ker dt \ TPf

~Af(RL)f = (RL)f f ; g ~Af

(AS ;BS)

�S

f ; gAS

R� T �Q

 
dt; !Q;

@

@t

!

f ; g

(�; !;R)

(P;Q)

f ; gD

((A1)f ; (B1)f )

ker(A1)f = ker!1 \ ker �1 \ TMf

(A1)f (Rf ) = Rf f ; g(A1)f

Example 6.3.Consider the Lagrangian functionL : R × TR3 −→ R defined by

L(t, qA, q̇A) = 1
2(q̇

1 + q̇2)2 + 1
2

(
(q1)2 + (q2)2

) − tq1 .

Since dt ∧ ωL 6= 0 andω2
L = 0, it follows that(dt, ωL) is a precosymplectic structure. We

have that

M1 = {(t, qA, pA) ∈ R × T ∗R3 / p1 − p2 = 0 , p3 = 0}
and the primary constraints are thusφ1 = p1 − p2 andφ2 = p3. Both are first class.

If we take cordinates(t, q1, q2, q3, p1) onM1, we get

ω1 = i∗ωQ = dq1 ∧ dp1 + dq2 ∧ dp1 η1 = dt

and, then

kerω1 ∩ kerη1 = 〈(Xφ1)|M1, (Xφ2)|M1〉 =
〈
∂

∂q1
− ∂

∂q2
,
∂

∂q3

〉
.

Since the Hamiltonian functionh1 : M1 −→ R is

h1 = 1
2(p1)

2 + 1
2

(
(q1)2 + (q2)2

) − tq1

a new (secondary) constraintφ3 = t−q1+q2 arises and, therefore, the secondary constraint
submanifold is given by

M2 = {(t, qA, pA) ∈ R × T ∗R3 / p1 − p2 = 0 , p3 = 0 , t − q1 + q2 = 0} .
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M2 is, moreover, the final constraint submanifold, i.e. there are no tertiary constraints.
We see thatφ1 andφ3 are second class onM2 but φ2 is first class onM2.
We construct an almost product structure(P,Q) on R × T ∗R3 by setting

Q = 1

4

(
∂

∂q1
⊗ dp1 − ∂

∂q1
⊗ dp2 − ∂

∂q2
⊗ dp1 + ∂

∂q2
⊗ dp2

)
− 1

2

(
∂

∂q1
⊗ dt

− ∂

∂q1
⊗ dq1 + ∂

∂q1
⊗ dq2 − ∂

∂q2
⊗ dt + ∂

∂q2
⊗ dq1 − ∂

∂q2
⊗ dq2

)

+1

2

(
∂

∂t
⊗ dp1 − ∂

∂t
⊗ dp2 + ∂

∂p1
⊗ dp1 − ∂

∂p1
⊗ dp2

− ∂

∂p2
⊗ dp1 + ∂

∂p2
⊗ dp2

)
andP = id − Q. The Dirac bracket onR × T ∗R3 is given by

{q1, p1}D = {q1, p2}D = {q2, p1}D = {q2, p2}D = 1
2 {q3, p3}D = 1

the other brackets being zero. We also have that

R = P
(
∂

∂t

)
= ∂

∂t
+ 1

2

(
∂

∂q1
− ∂

∂q2

)
η = P∗(dt) = dt − 1

2
(dp1 − dp2) .

Observe that, as we have proved,R2 = R|M2 ∈ X(M2).
Now, let

H(t, qA, pA) = 1
2(p1)

2 + 1
2

(
(q1)2 + (q2)2

) − tq1 + λφ1 + µφ2

be an arbitrary extension ofh1. We get

(XH )|M2 = p1
∂

∂q1
+ (t − q1)

∂

∂p1
− q2 ∂

∂p2
+ λ

(
∂

∂q1
− ∂

∂q2

)
+ µ

∂

∂q3

and

P̄((XH )|M2) = p1

2

(
∂

∂q1
+ ∂

∂q2

)
+ µ

∂

∂q3
− q2

(
∂

∂p1
+ ∂

∂p2

)

(E(H,P))|M2 = ∂

∂t
+ p1 + 1

2

∂

∂q1
+ p1 − 1

2

∂

∂q2
+ µ

∂

∂q3
− q2

(
∂

∂p1
+ ∂

∂p2

)
.

We fix the gauge by taking an almost product structure(A2,B2) onM2 adapted to the
distribution

kerω1 ∩ kerη1 ∩ TM2 =
〈
∂

∂q3 |M2

〉
.

For instance, we can take

A2(R2) = R2 , A2

(
∂

∂q1
+ ∂

∂q2

)
= ∂

∂q1
+ ∂

∂q2

A2

(
∂

∂p1
+ ∂

∂p2

)
= ∂

∂p1
+ ∂

∂p2
A2

(
∂

∂q3

)
= 0
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andB2 = id − A2. Moreover, note that(A2,B2) is an integrable almost product structure
onM2. Since kerA2 = kerω1∩kerη1∩TM2 andA2(R2) = R2 we fix the gauge by taking
the vector field

ξ2 = R2 + A2
(
(P̄XH)|M2

) = ∂

∂t
+ (p1 + 1)

2

∂

∂q1
+ (p1 − 1)

2

∂

∂q2
− q2

(
∂

∂p1
+ ∂

∂p2

)
.

Now, we apply the constraint algorithm to the precosymplectic system(R ×
TR3, dt, ωL,EL). The final constraint submanifold isP2 = Pf , where

P2 = {(t, qA, q̇A) ∈ R × TR3 / t − q1 + q2 = 0} .
The vector field

ξ = ∂

∂t
+ (q̇1 + q̇2 + 1)

2

∂

∂q1
+ (q̇1 + q̇2 − 1)

2

∂

∂q2
− q2 ∂

∂q̇1

is a solution of the equations of motion onP2 and is projectable byLeg|P2 onto the vector
field ξ2. Following remark 6.1, we can construct a submanifoldS of P2 such that a unique
solution ξS of the equations of motion satisfying the NSODE condition onS exists (see
[5, 11]). In this case, we obtain

S = {(t, qA, q̇A) ∈ R × TR3 | t − q1 + q2 = 0, 1 − q̇1 + q̇2 = 0, q̇3 = 0}
and

ξS =
(
∂

∂t
+ q̇1 ∂

∂q1
+ (q̇1 − 1)

∂

∂q2
− 1

2
q2

(
∂

∂q̇1
+ ∂

∂q̇2

))
|S
.

Via the diffeomorphismα = (Leg|S)−1 : M2 −→ S we can transport the almost product
structure(A2,B2) and to obtain the almost product structure(AS,BS) on S given by

AS(RS) = RS AS

(
∂

∂q1
+ ∂

∂q2

)
= ∂

∂q1
+ ∂

∂q2

AS

(
∂

∂q̇1
+ ∂

∂q̇2

)
= ∂

∂q̇1
+ ∂

∂q̇2
AS

(
∂

∂q3

)
= 0

where

RS = ∂

∂t
+ 1

2

(
∂

∂q1
− ∂

∂q2

)
.

7. Autonomous Lagrangian systems

Suppose thatL′ : TQ −→ R is an almost regular time-independent Lagrangian
function. LetωL′ = −d(J ∗(dL′)) be the Poincaré–Cartan 2-form which is supposed to
be presymplectic. LetLeg′ : TQ −→ T ∗Q be the Legendre transformation,M ′

1 the
primary constraint submanifold on the Hamiltonian side,h′

1 the Hamiltonian function on
M ′

1, andω′
1 = (i ′)∗(ωQ), wherei ′ : M ′

1 −→ T ∗Q is the canonical embedding.
We can considerL′ as a Lagrangian functionL : R×TQ −→ R which does not depend

on the time, that is,L(t, qA, q̇A) = L′(qA, q̇A). Therefore,L is almost regular and(dt, ωL)
is a precosymplectic structure onR × TQ.

We can easily deduce that, ifM1 is the primary constraint submanifold, thenM1 =
R ×M ′

1. Also, we obtain that thei-ary constraint submanifoldsMi andM ′
i of L andL′,

respectively, are related byMi = R ×M ′
i . Thus,Mf = R ×M ′

f .
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The almost product structure(P ′,Q′) on T ∗Q constructed in [14] is related with our
almost product structure(P,Q) on R × T ∗Q by

Q = Q′ P = P ′ + dt ⊗ ∂

∂t
.

Moreover, the corresponding Diract brackets are related by the following formula
{F,G}D′ = {F,G}D, for all F,G ∈ C∞(T ∗Q).

8. Affine Lagrangian functions

Let L : R × TQ −→ R be a time-dependent Lagrangian which is affine on the velocities,
i.e.

L(t, qA, q̇A) = µA(t, q
A)q̇A + f (t, qA) .

L may be globally defined as follows:

L = α̂ + (τ̃Q)
∗f (8.1)

where α = ∑
A µA(t, q

B)dqA is a 1-form onR × Q which verifiesα(∂/∂t) = 0, f
is a function onR × Q, and α̂ : R × TQ −→ R is the evaluation map defined by
α̂(t, Xq) = α(t,q)(Xq), for all (t, Xq) ∈ R × TqQ (see [5, 11, 12, 13]). From equation (8.1),
we obtain

EL = −(τ̃Q)∗f ωL = −(τ̃Q)∗(dα) .
Suppose that the pair(dt, dα) is a cosymplectic structure onR × Q with Reeb vector
field R. Let Ef be the evolution vector field with respect to the cosymplectic structure
(dt, dα). If RL and ξ are vector fields onR × TQ which areτ̃Q-projectable ontoR and
Ef , respectively, we deduce that

iRL
ωL = 0 iRL

dt = 1 iξωL = dEL − RL(EL)dt iξdt = 1 .

Thus, (R × TQ, dt, ωL,EL,RL) is a precosymplectic system which admits a global
dynamics. We also have that kerωL ∩ ker dt = V (R × TQ).

The Legendre transformationLeg : R×TQ −→ R×T ∗Q is given byLeg(t, qA, q̇A) =
(t, qA, µA).

The 1-formα may be viewed as a time-dependent 1-form onQ, α : R ×Q −→ T ∗Q
and, then, the mapping9 : R × Q −→ R × T ∗Q, defined byψ(t, qA) = (t, α(t, qA))

is a diffeomorphism fromR × Q onto the primary constraint submanifoldM1. Thus,L
is almost regular. In fact, the pair(η1, ω1) is a cosymplectic structure onM1 and the
map9 : R ×Q −→ M1 is a cosymplectomorphism between the cosymplectic manifolds
(R ×Q, dt,−dα) and(M1, η1, ω1), i.e.9∗η1 = dt and9∗ω1 = −dα (see [5, 11]).

All the primary constraints8A = pA − µA, 1 6 A 6 m, are second class, since

{8A,8B} = ∂µB

∂qA
− ∂µA

∂qB

and the matrixC̃AB = ({8A,8B}) is regular because(dt, dα) is cosymplectic. Then, the
matrix C whose entries are

CAB = ∂µB

∂qA
− ∂µA

∂qB
+ ∂µA

∂t

∂µB

∂t

is also regular. The projectorQ is given explicitly by

Q =
∑
A,B

CAB
(

−∂µA
∂t

∂

∂t
+ ∂

∂qA
+

∑
C

∂µA

∂qC

∂

∂pC

)
⊗

(
dpB − ∂µB

∂qD
dqD − ∂µB

∂t
dt

)
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andP = id − Q. We also have that

R = ∂

∂t
+

∑
A,B

CAB ∂µB
∂t

∂

∂qA
+

∑
A,B,C

CAB ∂µB
∂t

∂µA

∂qC

∂

∂pC

η = dt −
∑
A,B,D

CAB ∂µA
∂t

∂µB

∂qD
dqD +

∑
A,B

CAB ∂µA
∂t

dpB .

The Dirac bracket{ , }D on R × T ∗Q is given by

{F,G}D =
m∑
A=1

(
∂F

∂qA

∂G

∂pA
− ∂G

∂qA

∂F

∂pA

)

+
m∑

A,B,C,D=1

CAB
(
∂G

∂qB
+ ∂µB

∂qC

∂G

∂pC

) (
∂F

∂qA
+ ∂µA

∂qD

∂F

∂pD

)

−
m∑

A,B,C,D,A′,B ′=1

CABCA′B ′

(
∂F

∂qB
+ ∂µB

∂qC

∂F

∂pC

) (
∂G

∂qB
′ + ∂µB ′

∂qD

∂G

∂pD

)
∂µA

∂t

∂µA′

∂t
.

If H is an extension ofh1 to R×T ∗Q, the restriction of theP-evolution vector fieldE(H,P)
is the solution of the dynamics (see theorem 5.2). Moreover,(E(H,P))|M1 is just the vector
field T9(Ef ) (see [5]). Finally, in this case, the submanifoldS of R × TQ is Ef (R ×Q),
and the vector fieldξS is the restriction toS of the complete lift ofEf to T (R×Q) (see [5]).
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Appendix

We will prove that the determinant of the matrixC whose entries areCab = {8a,8b} +
(∂8a/∂t)∂8b/∂t coincides with the determinant of the matrix̃Cab = {8a,8b}. The result
follows from the following propositon.

Proposition A.1.Let A = (aij ) be a skew-symmetric matrix where 16 i, j 6 n, andn is
an even number, and letB = (bij ) be a symmetric matrix defined bybij = bibj , bi, bj ∈ R,
1 6 i, j 6 n. We deduce that

|A+ B| = |A| .
Proof. We have that

|A+ B| =
∑
σ∈Sn

(−1)σ (a1σ(1) + b1bσ(1))(a2σ(2) + b2bσ(2)) · · · (anσ(n) + bnbσ(n))

= |A| +
n∑
i=1

∑
σ∈Sn

(−1)σ bibσ(i)a1σ(1) · · · âiσ (i) · · · anσ(n)

+
∑

i1,i2=1,...,n,i1<i2

∑
σ∈Sn

(−1)σ bi1bσ(i1)bi2bσ(i2)a1σ(1) · · · âi1σ(i1) · · · âi2σ(i2) · · · anσ(n)
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+ · · · +
∑

i1,...,in−1=1,...,n,i1<···<in−1

∑
σ∈Sn

(−1)σ bi1bσ(i1) · · · bin−1bσ(in−1)ainσ (in)

+
∑
σ∈Sn

(−1)σ b1bσ(1) · · · bnbσ(n) .

All the terms, with exception of the first and second ones, are trivially equal to zero.
Therefore

|A+ B| = |A| +
n∑
i=1

bi(−1)1+i
(∑
σ∈Sn

(−1)σ (−bσ(1))a1σ(2) · · · ai−1σ(i)ai+1σ(i+1) · · · anσ(n)
)

= |A| + |C|
whereC is the skew-symmetric matrix defined byc11 = 0, c1j = bj−1 (j > 2), ci1 = −bi−1

(i > 2) andcij = ai−1,j−1 (i, j > 2). SinceC is a skew-symmetric matrix of odd order,
then |C| = 0. Thus,|A+ B| = |A|. �
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[3] Cantrijn F, de Léon M and Lacomba E A 1992 Gradient vector fields on cosymplectic manifoldsJ. Phys. A:
Math. Gen.25 175–88
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[14] de Léon M, Mart́ın de Diego D and Pitanga P 1995 A new look at degenerate Lagrangian dynamics from
the viewpoint of almost product structuresJ. Phys. A: Math. Gen.28 4951–71
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