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Abstract. In this paper the canonical Dirac formalism for time-dependent constrained
Hamiltonian systems is globalized. A time-dependent Dirac bracket which reduces to the usual
one for time-independent systems is introduced.

1. Introduction

The aim of this paper is to globalize the Dirac approach to constrained Hamiltonian
systems [6, 18, 19, 2, 16, 4, 20] by using modern tools of differential geometry. If we
start with a singular time-independent Lagrangian functigp®, ) defined on a phase
space of velocitiesI' 9, the Hamiltonian energy:; is well-defined on the submanifold
M1 = Leg(T Q), provided thatL is almost regular. In this case, the canonical formalism
of Dirac [6] proceeds as followsM; is defined by the vanishing of some functions (called
primary constraintsy¢ on T*Q, and these primary constraints have to be preserved in
time yielding new (secondary) constraints. Eventually, a final constraint submanifold is
obtained. The Dirac constraint algorithm was globalized by Gotay and Nester [8-10] (see
[4] for a recent review). By using the second-class constraints, one constructs the so-called
Dirac bracket{ , }p, which is a modification of the canonical Poisson bradket on the
phase spac&*(Q. The reason is that the evolution of an observaples simply written
as f ~ {f, H}p, for an appropiate prolongatioH of 4,, and, moreovef , }p transforms
second-class constraints into Casimir functions. These results are crucial for quantization.
This approach was globalized in a recent paper [14] by using almost product structures.
One may think that the extension of the theory to the time-dependent case is
straightforward, a matter of pure technicalities. However, we realized that the geometry is
more involved. The first point is that one has to use a cosymplectic geometry instead of
a symplectic one, because the evolution of an observable is measured by using a modified
Hamiltonian vector field (called the evolution vector field for obvious reasons). The second
point is that, when we are in the presence of second-class constraints, the corresponding
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Dirac bracket is more involved, and it becomes the usual one if the Lagrangian is time-
independent.

The paper is structured as follows. Sections 2 and 3 are devoted to introducing the
geometrical machinery: cosymplectic and adapted almost product structures and their
associated Dirac brackets. In section 4 we review the constraint algorithm developed in
[5] and [11]. In section 5 we apply the geometrical results to the analysis of a constrained
time-dependent Hamiltonian system. For clarity, we first consider Lagrangians admitting a
global dynamics (where there are no secondary constraints). We obtain the corresponding
Dirac bracket which gives the evolution of an observable (with respect to an appropiate
prolongation of the Hamiltonian function) and transforms second-class constraints into
Casimir functions. Next, we analyse constrained systems with secondary constraints in
section 6 and an example is studied in order to check the effectiveness of our method. In
section 7 the time-independent case is recovered and, in section 8, the Dirac bracket for
affine Lagrangian systems is obtained. The paper is completed by a technical appendix.

2. Cosymplectic vector spaces and manifolds

Let V be a real vector space of dimension 2 1, n a 1-form onV andw a 2-form onV.
Then the triple(V, n, w) is called a cosymplectic vector spacejii ™ # 0.

If V is a real vector space, is a 1-form andw is a 2-form onV, we define the linear
map

Xno - V— V* v —> Xﬂ,w(v) =i,w+ (n)n
whereV* is the dual space of. We have the following proposition.

Proposition 2.1 ([1]). x,.. is a linear isomorphism iff eithe(V, n, w) is a cosymplectic
vector space in the case whérds odd dimensional, ofV, w) is a symplectic vector space
in the case wher® is even dimensional.

Thus, if (V, n, ) is a cosymplectic vector space then there exists a uitjgeV such
that n(R) = 1 andizew = 0. In fact, R = x, 5(n). R is called the Reeb vector of the
cosymplectic vector spad@/, n, w).

Let W be a subspace of a cosymplectic vector spéfen, w). We define the
orthocomplement ofV in V with respect ta(n, ) as the subspac# given by

W = {veV/iw—n@mnw =0} (2.1)
We obtain the following proposition.

Proposition 2.2.If W is a subspace of a cosymplectic vector spdcen, ») then dimV =
dimW +dmw+ and(WH)*t = {v — 2p(v)R / v € W}. Moreover, if W N W+ = {0}, we
haveV =W @ W+.

Now, suppose thaM is a smooth(2m + 1)-dimensional manifold. M is said to be
almost cosymplectic if a 1-form and a 2-formw on M exist such that for alk € M the
triple (T, M, n,, w,) is a cosymplectic vector space, whefgV is the tangent space
atx. If the 1-formn and the 2-formw are closedM is called cosymplectic.

Let (M, n, w) be an almost cosymplectic manifold. Denote Rythe Reeb vector
field of (M, n, w) and by, ., : TM — T*M the corresponding smooth vector bundle
isomorphism.

By means ofy, ., one can associate with every functighe C*°(M) the Hamiltonian
vector field X which is defined by (see [1, 3]):

Xp=xyudf —R(f)n) & ixn=0 ixw=df —R(f)in. (2.2
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Furthermore, the gradient vector field gra@nd the evolution vector field; are given
by

gradf = R(HR+ Xy Ef =R+ Xy. (2.3)

If (M,n,w) is a cosymplectic manifold, there exists @it°(M) a Poisson bracket
defined by{ f, g} = o (X, X,). The symplectic leaves of this Poisson structure are precisely
the leaves of the integrable distribution ke¢see [1]). It should be noted that

Er(g) =R(g) +1{g, f}

gives the evolution of with respect to the Hamiltonian functiofi. So, in order to get the
evolution of an observable we need a Poisson bracket and a vector field.

3. Almost product structures adapted to precosymplectic structures

An almost product structure on a manifald is a tensor fieldF of type (1, 1) on M such

that F2 = id. The manifold M will be called an almost product manifold [15]. If we

setA = %(id + F), B = %(id — F), then A and B are complementary projectors, i.e.

A+B=1id, A2 = A, B> = B, AB = BA = 0. We denote byimA and ImB the

corresponding complementary distributions. Hefded = Im A @® ImB. We denote by4*

and B* the transpose operators, aha. A* and ImB* will be their corresponding images.
Next, we will introduce the notion of almost product structure adapted to an almost

precosymplectic structure. First, let us recall the definition of almost precosymplectic

structure (see [5]).

Definition 3.1.Let M be a manifold;; a 1-form andw a 2-form onM. The pair(n, ») is
said to be an almost precosymplectic structurédif n Aw” # 0 andw’ ™t = 0. Moreover,
if » andw are closed then the pair, w) is called a precosymplectic structure.

Remark 3.2If (n, ) is an almost precosymplectic structure &nthen there exists at least
a vector fieldR on M such thaty(R) = 1 andizrw = 0 (see [5]).

Definition 3.3.Let (1, w) be an almost precosymplectic structure on a manifdléand R
a vector field such thaj(R) = 1 andirw = 0. An almost product structured, B) on M
is said to be adapted to the triple, w, R) if

kerw Nkern = kerA R=AMR).

Remark 3.4An almost product structuréA, B) is adapted to the triplén, w, R) if and
only if

kero = kerlA—nQ®R) A'n=n.

Moreover, if F is the (1, I)-tensor field onM given bygE =A-B-nQ®R, adirect
computation proves that? = id—n®R. Thus, the triplg F, n, R) is an almost paracontact
structure onM (see [17]).

Let (A, B) be an almost product structure #h adapted to a triplén, w, R). Consider
the linear mapping, .., : X(M) — AY(M) defined by

Xn,(u(X) = in + (U(X))’? .

Thus, x,,.»(R) = n, andy,., induces an isomorphism @*(M)-modulesy,, ., : ImA —
ImA*.
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Using x,.. one can associate with every functigne C*(M) an.4-Hamiltonian vector
field X, .4) which is given by
X5 = Xy (A*@Af) = R(f)n) € ImA (3.1)
or, equivalently,
Xa €ImA ix @ =A"df) —R(f)n ix,,n=0. (3.2

Also, the A-gradient vector fieldgradf) 4 and the.A-evolution vector fieldE ;4 are
given by

(gradf)A =R(HR + X(_ﬂA) E(_f,A) =R+ X(f,A) . (33)
Now, we define a bracket of functions as follows:
{f, gla=oX(sa, X)) (3.4)

where f, g € C®(M); { , }4 satisfies all the properties of a Poisson bracket except the
Jacobi identity. Moreover, ifA andB are given byd = A—n®R, B=B+n®R,itis

clear that the paitA, B) is an almost product structure adapted to the almost presymplectic
2-form w and the bracket of functions aif defined by the almost product structuré, 3)

is just{, }4. Thus, using the results for presymplectic structures in [7, 14], we have the
following proposition.

Proposition 3.5.Let (, w) be an almost precosymplectic structure Mnhand R a vector

field such thairw = 0 andizrn = 1. Suppose that the 2-formis closed and thatA, B) is

an almost product structure adapted to the triglew, R). Then the bracket, } 4 defined

by the almost product structure satisfies the Jacobi identity if and only if the almost product
structure(A, B) is integrable, whered = A —n® R andB =B+ n ® R.

In this case, iff is a Hamiltonian function o/ we haveE y ) (f) = R(f)+{f, H} 4,
for an observableg’. Thus, f = R(f)+{f, H} is the evolution off provided thatE . 4
gives the dynamics. The point is to construct a suitable adapted almost product structure.

4. The constraint algorithm

Let O be am-dimensional manifold and denote by : TQ — Q the canonical projection.
If (g*), 1 < A < m, are local coordinates on a neighbourhdddof Q, we denote by
(g*, ¢"), 1 < A < m, the induced coordinates dhJ. Q will be the configuration manifold
for a time-dependent Lagrangian system with Lagrangian fundtiol®R x TQ — R. If
the Hessian matrix

92L
3GAdg8

is regular,L is called regular, and singular or degenerate otherwise. The energy function
associated wittL is defined byE; = CL — L, whereC is the Liouville vector field ol Q.
The Poincag—Cartan 1-form and 2-form are respectively definedrpy= J*(dL) — E df
and Q; = —du;, wherer is the standard coordinate dR. Here, J is the natural
extension toR x T Q of the canonical almost tangent structure. We define a 2-
form w;, = —d(J*(dL)) such that2; = w; + dE; A dt.

If L is regular, the pai(dz, w;) is a cosymplectic structure whose Reeb vector field is
denoted byR ;. Thus, the equations

iywr =dE; —RL(EL)dl‘ iydt =1 < ixQ; =0 ixydr=1 (41)
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have a unique solutiog; which is a time-dependent second-order differential equation
(NSODE, for simplicity, i.e.J&, = C andig, dt = 1); &, will be called the Euler—Lagrange
vector field forL. In fact, the solutions of; are just the solutions of the Euler—Lagrange
equations forL (see [15, 3, 5]).

If L is singular, we will assume that the pa&dr, w;) is a precosymplectic structure on
R x T Q. In this case, equations (4.1) have no solution, in general, and even if it exists it
will be neither unique nor a second-order differential equation.

Remark 4.1We note that ifL’ : TQ — R is a time-independent Lagrangian function and
defineL : R x TQ — R by L(z, g%, ¢*) = L'(¢*, ¢*), we deduce that the pafds, w;)

is a precosymplectic structure if and onlyif. is presymplectic, where; = —d(J*(dL"))

is the Poinca—Cartan 2-form oif Q (see section 7).

The Legendre mapeg : R x TQ — R x T*Q is locally written asLeg(z, g%, ¢*) =
(t,q*, pa), Where p, = dL/d¢* are the generalized momenta. In what follows, we
will suppose thatL is almost regular, i.eM; = Leg(R x TQ) is a submanifold of
RxT*Q andLeg : R x TQ —> M; is a submersion with connected fibres (this implies
that the rank of the Hessian matrix is constant and it is equal toMiim+ (m + 1)).
The submanifoldM; will be called the primary constraint submanifold. We have that
kerTLeg = keroy N V(R x TQ) = kerQ; N V(R x TQ), whereV(R x TQ) is the
vertical bundle of the canonical projectiaiy : R x TQ — R x Q. SinceL is almost
regular, the energ¥, is constant along the fibres éfeg and, thereforeF; projects onto
a functioni; on M, i.e. hy(Leg(x)) = E;(x), for all x e R x T Q (see [5, 11]).

Denote byw, the canonical symplectic form ofi*Q. Since the painds, wp) is a
cosymplectic structure dRx T* Q, it defines a Poisson bracket } onRx T*Q. Moreover,
if i : My — R x T*Q is the natural embedding d#f; into R x T*Q, w1 = i*wp and
n1 = i*dr then, sinceLeg: : R x TQ — M, is a submersion andegjw: = w; and
Legini = dt, we deduce thatn,, w1) is a precosymplectic structure ovf;. If we put
Q1 = w1 + dhy A 01, the Hamilton equations of the motion @, are

ixQ =0 ixm=1< ixwr=0dh; —Ri(hn1 ixm=1 (4.2)

whereR; is a vector field onM; such thatiz,w1 = 0, ix,n1 = 1. (Note that there are
many choices fofR;). However, in general, equations (4.2) have no solution.

If k is the rank of the Hessian matrix, there exist k independent constraingg’ which
describeM;. The functionsp® were called by Dirac primary constraints. Af is an arbitrary
extension ofi; to R x T*Q, all the Hamiltonian functions of the forfd = H + > had?,
wherel, are Lagrange multipliers, are weakly equal, YSQMl = H)y, = h1. The Hamilton
equations of the motion are written in terms of the canonical Poisson brackRt<ofi* O

as follows:
A
ddit ={¢", H) dd% ={pa,H ~ ¢°=0.
Thus, there is an ambiguity in the description of the dynamics.
Let Q; be the 2-form orR x T*Q given by Q; = wo + dH A dr. A solution of
the equations of motionyQ2; = 0, ixdr = 1 always exists. In factX is the evolution
vector field E; associated with the functioAl with respect to the canonical cosymplectic
structure(ds, wp) on R x T*Q. Since the constraints must be preserved in the time, i.e.

(E )M, Must be tangent td/; we get

dp?

S TS HY 4D ale”, ¢}~ 0 (4.3)
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i.e. (09P/dt + {#°, H} + Y, 2a{9®, ¢*Dm, = 0. The vanishing of these expresions can
lead two kinds of consequences: some of the arbitrary functigneay be determined or
new constraints may arise. These new constraints are called secondary constraints. The
primary and secondary constraints define the submani¥sid Now, we can proceed in a
similar way with the secondary constraints, because they should also be preserved in time.
This process may be continued and the initial problem is solvable if we arrive at some
final constraint submanifold/, where consistent solutions exist. It is possible to give a
classification of the constraints generated by this algorithm in order to clarify the ambiguity
of the dynamics. A constrairg of M; (thei-ary constraint submanifold) is said to be first
class if{¢, ¢} ~ 0 for each constrainp? of M;. Otherwise¢ is said to be second class.

This constraint algorithm was globalized in [5] and [11]. In fact, equations (4.2) suggest
that we should consider the following general situation.

Let (n, w) be a precosymplectic structure on a manif§ldR a vector field such that
irw =0, izrn =1, andh a real differentiable function. Consider the pointsSoivhere the
equations

have a solution and suppose that this Sgtis a submanifold ofS. Nevertheless, the
solutions of (4.4) onS, are not necessarily tangent §. Hence, we take the points of

S, on which there exists a solution which is tangentSto Thus, a new submanifolds

is obtained and the process may be continued. Note that the tangency condition is the
geometrical translation of the preservation of the constraints. We have the sequence of
submanifolds -+ — S — .-+ — S, — §; = S. Alternatively, these submanifolds

can be described as follows:

Si={x € Si_1/(dh + (L — RM)N:(v) =0 Vv e T,"Si_1}
where
TxJ—Si—l ={v e I:S/(ywr — nx(v)nX)\TxSifl =0}.

We call S, the secondary constraint submanifofd,the tertiary constraint submanifold,
and, in general,s; is the i-ary constraint submanifold. If the algorithm stabilizes, i.e.
there exists a positive integér such thatS, = S;,; and dimS; > 0, we obtain a final
submanifoldS, such that a solutioiX on Sy exists, i.e.X is a vector field onS; satisfying
(ixo =dh = R(W)n, ixn =1y,

This algorithm can be applied when we consider the particular sy&mn;, w1, i1,
R1). Moreover, if R, is a vector field orR x T Q which is Leg;-projectable on the vector
field R4, the systemqR x T Q, dt, w;, E, Ry) and (My, n1, w1, h1, R1) are equivalent
and they are related by the Legendre transformation (see [5, 11]).

5. Lagrangian systems with a global dynamics

Assume that the precosymplectic systéfx T Q, dt, w;, E;) admits a global dynamics,
i.e. there exists at least a vector fiddldon R x T Q such thatt satisfies the equations of
motion: i:2; = 0, izdt = 1. In such a case, the submanifdy, = Leg(R x T Q) is the
final constraint submanifold and there are no secondary constraints.

We denote byd“, 1 < a < s, the second-class constraints andd@dy 1 < i < p, the
first-class constraints. The matrikwhose entries aré* = {®“, ®”} is non-singular on
M; (see [19, 20]) and, for simplicity, we will assume thats non-singular orR x T*Q.
Thus, s is even, say = 2r. The determinant of the matri& is equal to the determinant
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of the matrixC with entriesC* = {®%, *} + (9d?/d1)dd" /3t = (gradd®)(d“) (see
appendix A for a proof of this). Therefore, the mattixis also non-singular and we will
denote by(C,;) its inverse matrix.

Since{¢’, *} ~ 0 and{¢’, ¢/} ~ 0 forall 1< j < p and 1< a < s , we have that
(X4i)m, is tangent toM for all 1 < i < p. Consequently, ifR, is a vector field onM;
such tharl.lea)]_ = 0 andn1(R1) = 1, we deduce that

0 = (ig, ) ((Xg)my) = —(ix,; @), (R1) = —(dp") 31, (R1)

3¢ S (0 o lagl
+< n >M1 dfjp, (R1) = ( a7 >M1 n1(Ry) = < 5 >|M1 . (5.1)

In particular,(gradg’)y, = (X)) m, for all i.

Now, let D (D) be the distribution onR x T7*Q generated by the vector fields
grad®® (gradd®® and grady’). Denote byDL(x) (D(x)) the orthocomplement of the
subspaceD(x) (D(x)) in the cosymplectic vector spadd; (R x T*Q), dt(x), wg(x))
for all x € R x T*Q. |If x; is a point of M1, from equations (2.1), (2.2), (2.3),
(5.1) and proposition 2.2, we obtain th&'(x;) = T,,M; and T-M; = (DH)*(x1) =
((Xge — (00“/31)9/01)(x1), X4i (x1)). Moreover, if x is a point of R x T*Q, since the
matrix C is non-singular, we have th&(x) N D+ (x) = {0} and, thus, from proposition 2.2,
we conclude thaf, (R x T*Q) = D(x) & D+ (x).

Let @ : D @ D — D be the projection orD along D+, and putP = id — Q. The
projector @ is explicitly given by

Q= Cugradd’ @ dd’ . (5.2)

a,b

Using the fact that the pain:, w1) is a precosymplectic structure dd; and the fact that
the matrixC is regular, we deduce that

kerwy Nkerny = T My N TMy = (DY), NTMy = ((Xg)uy) - (5.3)

Next, we consider ofR x T*Q the 1-formn and the vector fieldR defined byn = P*(dt)
andR = P(d/dt). It is clear thatR(®”?) = 0 for all . Moreover, using equations (5.1)
and (5.2), we obtain thaR ,, (¢') = O for all i and, therefore the restrictioR, of R to
M3 is tangent toM;.

A direct computation using the definition @+ (see equation (2.1)) and the fact that
i:»wg = 0 proves thatP*(irwg) = (1 — df (R))n. In particular, d(R) =1 or d(R) = 0.
I\TOW, if dr(R) = 0, we getP*(irwg) = n. But it is not possible sinc&; is tangent to
M, and there exists a vector field; on M; such thatiﬁlwl =0,izm=1 Thus

dr(R) =1 (5.4)
which implies that

From equations (5.4) and (5.5), we obtain thaiw; = 0 andig,n; = 1.
Let w be the 2-form orR x T*Q defined byw = P*wo, whereP = P —n®R. Using
remark 3.4, and equations (5.4) and (5.5), we have the following proposition.

Proposition 5.1.(i) The pair(n, ») is an almost precosymplectic structurel®rx 7*Q and
irw = 0, n(R) = 1. (ii) The almost product structurg®, Q) on R x T*Q is adapted to
the triple (1, w, R).
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Now, using proposition 5.1, we can define the corresponding bracket of fun¢tjojs
onR x T*Q. In order to obtain an expression for the bracketlp we will first show that

P(Xr) = X(F.p) (5.6)
forall F € C*(R x T*Q). In fact, from equations (5.4) and (5.5), we have that
aF
$hwzﬁ<mu«§t—Qmmwﬂ>w>=wa—me) ipx,n =0
(5.7)

which proves (5.7). Consequently, using equations (5.5) and (5.7), we conclude that
{F,Glp = 0(X(rp), Xa.p) = {F, G} = Y _ Cap{®", GH{F, &%}

a,b
dde §pe
ar  or

— Y CaCar{®’, F}{®", G}
a,b,a’ b’

forall F, G € C*(RxT*Q). From equation (5.4), we obtain tHaX ¢« = 0, for1< a < s,
which implies that{F, ®“}p = 0 for F € C*(R x T*Q) (see equation (5.7)). Thus, the
second-class constraints are Casimir functions for the brdckgs. Furthermore, ifp is a
constraint function then, it is clear thép, ¢'}p ~ 0, for 1<i < p.

The brackef{ , }p is called the time-dependent Dirac bracketldrx T*Q. Note that
if F,G e C®(T*Q) and the constraint®* do not depend of then{F, G}p is the usual
Dirac bracket on7*Q. Moreover, ifQ = Q + 7 ® R and the almost product structure
(P, Q) is integrable, then the 2-form is closed and, from proposition 3.5, we deduce that
{, }p is actually a Poisson bracket d@x 7*Q.

Let H be an arbitrary extension @&, to R x T*Q. We have the following theorem.

Theorem 5.2If Ejy is the evolution vector field associated wifth with respect to the
canonical cosymplectic structufdr, wg) onR x T*Q and E g, p) is theP-evolution vector
field associated withH, then

Enp=R+PXp)=A-nXp)R+PXp) (5.8)

and the restriction ofy p) to M is tangent toM; and it is a solution of the equations of
motion.

Proof. From equations (3.3) and (5.7), we obtain equation (5.8) directly.
Next, from (5.4) we have

df (Eu,py) = 1. (5.9)

Furthermore, if X is a vector field onMi, (ig,,Q ®o)m(X) =0 and, using
equations (3.2) and (3.3), we get

(Eup@0) My (X) = (iE 4 p @) (X) = (dhy — Ri(h)n)(X) . (5.10)

Let & be a global solution of the equations of motion. Using equations (5.9) and (5.10),
we obtain that

1 - ad* 9
(Enpy —81)(x1) € T,y M1 = (D7) (x1) = <<X<1>~ ~ 8t> (1), (X¢f)(xl)>
for all x; € M;. Now, since(Eu.p))m, (®°) = £1(®?) = 0, for all b, we conclude that
(E(H’p) —&)(x) € ((X¢i)(xl)> - Tlel for all X1 € Ms. This shows thatE(H'p))|Ml is
tangent toM; which concludes the proof of our result. O
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If FeC®R x T*Q) then, using thaty »)(F) = R(F) + {F, H}p, we deduce that
the evolution of the observablg = Fjy, is given by f = Ra(f) + ({F, H}p)m, -
From equations (5.2), (5.4) and (5.8), we also have that

9 L
Ep =5 +Xu —anb{cb H}X g0 —an t(1+Zc/br (@, H}az)X‘D‘“

By a straightforward computation we obtain the result t#&f; p))um, is precisely the vector
field (E5)m, where H is the Hamiltonian function defined from (4.3), i.e.

~ - [P b .
H=H—Xb:Cab 5, Tleh Yo

Now, in order to fix the gauge, we consider an almost product struc¢diel3,) adapted to
the triple (n1, w1, R1). Thus, if&; is a solution of the equations of motion ad;, we can
select a unique solutiod; (&1) such that4,(¢1) € Im.A;z. In particular, ifH is an arbitrary
extension oy, &1 = (Eu,p)) i, iS @ solution of the equations of motion &#y, and we fix
the gauge by takingly(€1) = A1(Eq.p) ) = Ra+ A1(P(X 1)) (See equation (5.8)).
We also have the corresponding bracket of functipns} 4, on M; which is a Poisson
bracket if the almost product structucel;, By) is integrable, whered; = A; — 1 @ R1
and Bl By + n Q Ri.
The above results are summarized in table 1.

Table 1. First- and second-class primary constraints.

R x 7T*Q RxTQ M,
dt, w 0 (n,w, R wi, R
wasa (11,0, R) (1,1, Ry)
{ s } {1 }D { s }Al
(P,Q) (A1, B1)

Next, we will study two particular cases:

1. All the primary constraints are second clasdn this case, using equation (5.3) and
proposition 2.1, we deduce that the péin, w1) iSs a cosymplectic structure oM, and
‘R1 is the Reeb vector field. Moreover, there exists a unique soldticrf the equations
of motion iz,w1 = dhy — Ri(h1)n1, ign1 = 1. In fact, & is the evolution vector for
the functioni; : M; —> R with respect to the cosymplectic structupg, ;). On the
other hand, if the almost product structyf@, Q) is integrable and o/, we consider the
Poisson bracket, }; defined by the cosymplectic structutg;, 1), and onR x T*Q the

Dirac bracket{ , }p, which is also a Poisson bracket, we get that the canonical embedding
i : M — R x T*Q is a Poisson morphism. This result follows using the fact that if

F is aC*-function onR x T*Q and f is the restriction ofF to M1 then (X p))um, IS
the Hamiltonian vector field; with respect to the cosymplectic structurg, 1) (see the
proof of theorem 5.2).
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2. All the primary constraints are first classIn this casey = df, w = wgp, R = 9/9¢, and,

if H is an arbitrary extension ® x 7*Q of iy, then&; = (Eu,p))m, = (En)im, 1S tangent

to M1, and it is a solution of the equations of motion. Furthermore, the classical procedure
consists in choosing function®&, 1 < j < p, onT*Q such that the matrixf’, ¢/} = (c/)

is regular. The determinant of this matrix is called the Faddev—Popov determinant. Then,
if H is an arbitrary extension af; : M; — R, H=H+ > Li¢' and we impose the
tangency of the evolution vector fields of the Hamiltonian functiéhso the submanifold
defined by the constraintsf/}, we get thaty; ~ (3, cijtH, 71, (¢;;) being the inverse
matrix of (¢/). Thus, we have fixed the gauge. But the above construction is equivalent
to take an almost product structu¢d, B) on R x 7*Q given by B = Z[,j cij Xy @df7

and A = id — B. The almost product structure4, 15) restricts onM; and its restriction

(A1 = Ay, B1 = Bjy,) is adapted to the triplén1, w1, R1). Moreover, the solution of the
equations of motion o/, obtained using the classical procedure is just.theevolution
vector field associated with the functién : M; — R.

6. Lagrangian systems with secondary constraints

We denote byd“, 1 < a < s, the primary second-class constraints andpbyl < i < p,
the primary first-class constraints.

By applying the constraint algorithm to the precosymplectic syst¥m n1, w1, h1) we
obtain a sequence of submanifolds

My — -+ — My — My_1 —> -+ —> My — M1 — RxT*Q.

Assume that the algorithm stabilizes, i.e. there exists a positive integeuch that
Mi+1 = M and dimM; > 0. Suppose thad; is the final constraint submanifold. We
will call each constraint which is not primary a secondary constraint. The final constraint
submanifold M, will be determined by all the primary and secondary constraints. We
denote by®”, 1 < b < 5, the secondary second-class constraints ang’/byl < j < p,
the secondary first-class constraints. The primary second-class constraMisaré also
second class oM but the primary first-class constraints may be first or second class on
M;. Then we can suppose that, 1 < i’ < p/, are primary first-class constraints which
are also first class o, and ¢!, 1< i” < p”, are primary first-class constraints which
are second class oMy, wherep’ + p” = p. As in section 5, we will assume that there
exists at least a vector fielﬁf on My such thaﬁkf (w1)1m, = 0 and (1) u, (7~zf) =1 (note
that in section SMy = M,).

We denote by{x“} the set of all the second-class constraintsidpn Then, the pair
(P, Q) is an almost product structure @x T*Q, where

Q=) Cop grady” ® dx” P=id—Q
o,fp

(Cap) being the inverse matrix off{x®, x#} + (9x*/0t)0x”/0t). The restrictionRy (Ry)
of the vector fieldR = P(3/0r) to My (M) is tangent toM; (M) and the almost product
structure(P, Q) is adapted to the triplén, w, R), with n = P*(dr), @ = P*(wp) and
P =P-n®R. The vector fieldR ; satisfies the relationsz, (w1) |y, = 0, (1)1, (Ry) = 1.
As in section 5, we also define a Dirac bracket by
{F,G}p = o(XFp), XG.P)

ax“ 8)(“/
ot ot

= {(F,G})=)_Caplx”. GHF, x*}= Y CopCaplx” F}x”, G}
a.p a.f.a,pf
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forall F,G € C*(R x T*Q).

Now, if H is an arbitrary extension of; to R x T*Q, the restriction toM, of the
P-evolution vector fieldE @y p) = R + P(Xy) is tangent toM; and is a solution of the
equations of motion

(i(Egpy@1 = 0dh1 — Ri(h)n, iEgpyn = D, -

In order to fix the gauge, we consider an almost product struciude), (B1)¢) on
M; which is adapted to the distributioD; = kerw; Nkerny N T My, i.e. keXAy); = Dy
and such thatA;);(Ry) = Ry. Then, we fix the gauge by takingds) s ((Eu.p)m,) =
Rf + (ADs (PXu)m,)-

Next, suppose that we apply the constraint algorithm to the precosymplectic system
(R x TQ,dt,w, E;) in order to solve the equations of motion (4.1). We obtain a final
constraint submanifoldP; in such a way that the restriction t8; of the submersion
Legi : R x TQ — M, is a surjective submersioheg; : P — M, of Py onto M.
Moreover, ifé; is a solution of the equations of motion dty which is Legy-projectable
onto a vector field&,), in My, then(&1)s is a solution of the equations of motion @i
and, conversely (see [5, 11]).

Now, let R, be a vector field oR x T Q which is Legi-projectable ontdR;. Since
the distribution kel Leg restricts toP; (see [5, 11]) we deduce that the restriction, ) s
to Pf of RL is tangent tOPf, i(RL)f(a)L)|p/ =0 andi(RL)f (dl‘)|pf =1.

Consider an almost product structutd,, 3;) on P; adapted to the distributiod; =
kerw; Nkerd N T Py and such that it id.eg,-projectable onto an almost product structure
((A1)¢, (By)y) on My, and (ftf)((RL)f) = (Ry)y (note that such an almost product
structure always exists). Then, the almost product structute) s, (B1),) is adapted to the
distribution Dy, and (A1)/(Rs) = Ry. Furthermore, ifH is an extension t® x 7*Q of
hq and)?f is a vector field onP; which is Leg;-projectable ontd X . p))m, = (75XH)|Mf,
we can select a unique solutign= A;(Rp); + X;) = (Rp)s + As(X;) € ImA; of the
equations of motion

(ing = dEL — RL(EL)dt, igdl‘ = 1)|P/

and & is Legs-projectable onto the solutior’ = R, + (Al)f((ﬁXH)\Mf) =
(A ((E,p)m;)-

Remark 6.1In general, the solutiolf does not satisfy the NSODE condition @, i.e.
(J& = C)p,. However, there exists a smooth section M; — P, of the submersion
Legs : P — My and a unique vector fielgs on the submanifolds = «(M;) such that
(see [5, 11]):

(i) &5 is a solution of the equations of motion:

(igsa)L = dEL — RL(EL)dt, igsdf = 1)‘5 (61)
(i) &s verifies the NSODE condition:
(J(Es) =C)s -

If we transport viax the almost product structut@Ai) s, (B1)s) to S, we obtain an almost
product structuréAs, Bs) on S, which is adapted to kes; Nkerd N TS and such that the
projection by.As of any solutionX of the equations of motion (6.1) is also a solution of
these equations; moreoveds(X) = &g, and, then, it verifies the NSODE condition.
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Remark 6.2Since the map(T Legy) 5, : D; —> Dy is surjective and keFLeg; =
(kerT Legy)|p, € Dy, we deduce that
dimD; = dim Dy + dimkerT Legy = dim Dy + (m — k)
wherek is the rank of the Hessian matrix.

Table 2 summarizes the results of this section.

Table 2. Primary and secondary constraints.

RxTQ R x 1*Q)
(dt,wr, Ry) (dtwq, %) (me,R)
(P.Q)
Py o {1
(As, By) {,1p
ker A; = kerwy, Nkerdt N TPy

~ M,
AR =Ry g

g ((A)g, (B1)s)

ker(A1); = kerw; Nkerny N TM;

(AS',BS) { 3 }As

£s (AR =Rs  {, by

Example 6.3 Consider the Lagrangian functidh: R x TR® — R defined by

Lt g " = 3" + D%+ 5 ((@H* + D7) —1q*.
Since d A @, # 0 andw? = 0, it follows that(ds, w;) is a precosymplectic structure. We
have that

My ={(t.q" pa) ERXT'R®/ p1—p=0, p3=0}

and the primary constraints are th#i5= p1 — p» and¢? = ps. Both are first class.
If we take cordinatesr, g1, g2, ¢°, p1) on My, we get

w1 = i*wg = dg* A dpy + dg® Adps Ny = dr

and, then

K K 0 0 d
erwy NKerny = <(X¢1)|M1» (X¢2)|M1> = ?11 - 37612’ @ .

Since the Hamiltonian functioh; : M; — R is

h=3()° + 3 (@D + ¢*)?) —1q*
a new (secondary) constraipt = t —g*+¢? arises and, therefore, the secondary constraint
submanifold is given by

Mz ={(t,q", pa) ERxT*R® / p1— p2=0, p3=0, t —q* +¢°=0}.
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M is, moreover, the final constraint submanifold, i.e. there are no tertiary constraints.
We see thaty! and¢® are second class oW, but ¢? is first class onV,.
We construct an almost product structufe, Q) on R x T*R® by setting

1/ 0 d d d 1/ 0
= - d d d d ——|-—®d
Q 4(81® p1— 31® p2 — 32® P1+82® Pz) 2<31®

a a d d d
- ®d'+ —Qd’— —— @d+-— ®dgt — — ®dg?
8q1®CI+8ql®q 8q® +32®q aq2®q

1/0 0 d
dp; — d — ®dp; — —®d
+2 (8t® p1 8t® P2+ap1® P1 8p1® P2

d
—®dP1+®dP2)
op2

andP = id — Q. The Dirac bracket ofR x T*R3 is given by
gt pdp =g  pado =% pp=1d% padn=3% (¢S palp=1

the other brackets being zero. We also have that

d d 1 0 d 1
R:P<>=+(—2) 1 =P () = di — (dpr— dpo).

ot ot 2\dqgl g
Observe that, as we have provéth = Ry, € X(My).
Now, let

H(t,q" pa) = 3(p0* + 3 (@H? + (¢®?) — tg* + 1" + pg?

be an arbitrary extension a@f,. We get

Kty = proce + ) 2 (- ) e
H) M —p18q1 q I’ q 8}72 8ql 8q2 H’aq?»
and
PUX == a3 7 \op1 ' op2
(( H)le) 2 <3q + 8q >+M8q3 a 8[71 + 3172
9 p+1la  p—10 9 o 1@
E = — 21 a2 o T apa)
(E(H.p))|M s T o gt 2 9g° +”aq v ap1 - dp2

We fix the gauge by taking an almost product structude, B3,) on M, adapted to the
distribution

d
kerwi nkerna NTM; = — .
dq My
For instance, we can take

ol 0 0 0
R2) =Rz, =—+—
A2(R2) =R Az( + Y ) ¥ + 372

d d ] d d
NIRRT
2\opr  opo ap1  Ip2 2\ 9g3
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and B, = id — A,. Moreover, note thatA,, 13,) is an integrable almost product structure
on M». Since ketd, = kerwyNkerniNT M, and A>(R;) = R, we fix the gauge by taking
the vector field
_ o (m+1D 9 (p1—1 9 N 9
=Ro+ A2 ((PX = — — — = —+—).
§2=Ro+ Ao (PXiw) = 5 + = it 2 a2 U \op T op
Now, we apply the constraint algorithm to the precosymplectic syst@mx
TR3, dt, w;, E;). The final constraint submanifold 8, = Py, where

Po={(t,q", ¢ eRxTR3 /1t —q*+¢?>=0}.

The vector field
G +¢*+D 9 @G +¢*-D a3 ,0
2 agt 2 a2 T agt
is a solution of the equations of motion @i and is projectable by.eg p, onto the vector
field &. Following remark 6.1, we can construct a submanif®ldf P, such that a unique

solution &g of the equations of motion satisfying the NSODE condition Hexists (see
[5, 11]). In this case, we obtain

S={(t.q".¢") eRxTR® |1 —q' +¢°=0,1-G'+4°=0,4° =0}

9
§=o 7+

and

d . 0 1 0 1,70 d
= — -)— - ¢ —=+— .
&s <3t +4q aq1-+(q )an 54 aql'+ 27 ))
Via the diffeomorphisme = (Legjs)~™! : M, — S we can transport the almost product
structure(A,, B2) and to obtain the almost product structurés, Bs) on S given by

d 9 3 0
As(Rg) =R A+ 2 )= &
s(Rs) =R ’ (3q1‘+ 8q2> agl " g2

0 0 0 0 0
As( 2+ 2 )= 2+ O A L) =0
. <aql * aqz) aql " age s (aqs)

9 1[99
Rs=—+- [ —-—).
S=5 1o (8q1 8q2)

7. Autonomous Lagrangian systems

where

Suppose thatl’” : TQ — R is an almost regular time-independent Lagrangian
function. Letw;, = —d(J*(dL’)) be the Poinc&—Cartan 2-form which is supposed to
be presymplectic. LefLeg’ : TQ — T*Q be the Legendre transformation; the
primary constraint submanifold on the Hamiltonian siéé,the Hamiltonian function on
M, andw)| = (iI")*(wg), wherei’ : M; — T*Q is the canonical embedding.

We can consideL’ as a Lagrangian functioh : R x T Q9 — R which does not depend
on the time, that isL(t, g%, ¢*) = L'(¢*, ¢*). Therefore,L is almost regular anddz, ;)
is a precosymplectic structure &x T Q.

We can easily deduce that, M; is the primary constraint submanifold, thé; =
R x Mj. Also, we obtain that theé-ary constraint submanifold&f; and M/ of L and L',
respectively, are related blyf; = R x M;. Thus,My =R x M.
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The almost product structur€®’, Q') on T*Q constructed in [14] is related with our
almost product structuréP, Q) onR x T*Q by
a
Q=9 P=V+w®§.
Moreover, the corresponding Diract brackets are related by the following formula
{F,G}p ={F,G}p, forall F,G € C*(T*Q).

8. Affine Lagrangian functions

Let L : R x TQ — R be a time-dependent Lagrangian which is affine on the velocities,
ie.

L(t,q" 4" = na(t.gMg" + ft,q™).
L may be globally defined as follows:

L=a+@"f (8.1)
wherea = Y, na(t, ¢%)dg? is a 1-form onR x Q which verifiesa(d/dt) = 0, f
is a function onR x Q, and& : R x TQ —> R is the evaluation map defined by

a(t, Xy) = aqq(X,), forall (¢, X,) e Rx T,Q (see [5, 11, 12, 13]). From equation (8.1),
we obtain

Ep =—(To)" f wp = —(To)"(da) .
Suppose that the paliid:, do) is a cosymplectic structure oR x Q with Reeb vector
field R. Let E; be the evolution vector field with respect to the cosymplectic structure

(dr, da). If Ry and& are vector fields oiR x T Q which aret,-projectable ontdR and
E;, respectively, we deduce that

iRLa)L =0 iRLdl =1 ing)L = dEL — RL(EL)dl igdt =1.

Thus, R x TQ,dt,w;, E;, R;) IS a precosymplectic system which admits a global
dynamics. We also have that ker Nkerd = V(R x T Q).

The Legendre transformatidieg : Rx T Q —> Rx T*Q is given byLeg(t, g*, ¢%) =
(t, q", wa).

The 1-forma may be viewed as a time-dependent 1-form®@no : R x Q — T*Q
and, then, the mapping : R x 0 — R x T*Q, defined byy (t, g*) = (¢, a(t, g*))
is a diffeomorphism fronR x Q onto the primary constraint submanifold;. Thus, L
is almost regular. In fact, the paini, w1) is a cosymplectic structure omf; and the
mapW¥ : R x Q — M; is a cosymplectomorphism between the cosymplectic manifolds
R x Q, df, —da) and (My, n1, w1), i.e. ¥*n, = dt and¥*w; = —da (see [5, 11]).

All the primary constraintsb® = p, — ua, 1 < A < m, are second class, since

0 d
(D4, dP) = hs _ OHa
dg4  9qB
and the matrixCA2 = ({®4, ®58}) is regular becauseds, do) is cosymplectic. Then, the
matrix C whose entries are

oAB _ dup  Opa | Opa dup
dgA  9qB or ot
is also regular. The projectd@ is given explicitly by

pta 0 s 9 oup . p Oup
2 A %) @ (dpp— S-BagP — B gy
Q= ZCAB( Tor at+an+XC:anapc)®<pB ot )
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andP = id — Q. We also have that

oup 0 oup s 0
R_i ZeB A T
+Z ABTo1 agh Z B8t g€ ape

a/'LA a/'LB D
=dr — C d C —d
n AXB:D AB 3q +Z AB PB -

The Dirac brackef , }p onR x T*Q is given by

- dF oG G OF
7.0 =3 (5 e~ sarins)
=\ dg* dpa 09" Ipa

8 G OF  dua OF
+ Z CAB< = )(A-I-MA)

4B C Pt ch dpc ) \dg* = aqP dpp

< OF  dug OF \ (0G  dup 3G\ dua dua
= 2 CusCan (st gca 50w T a0 ams ) B b
ABCSS Bt dg® ~ 3q° dpc ) \dq” ~ dq” dpp) 9t 9t

If H is an extension of; to R x T*Q, the restriction of thé>-evolution vector fieldE y p)
is the solution of the dynamics (see theorem 5.2). MoreoM&ty p))m, IS just the vector
field TW(E,) (see [5]). Finally, in this case, the submanifdldbf R x TQ is Ef(R x Q),
and the vector fieldy is the restriction tc5 of the complete lift ofE; to T (R x Q) (see [5]).
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Appendix

We will prove that the determinant of the matidkwhose entries ar@* = {®¢, ®*} +
(0d“/31)dd" /3t coincides with the determinant of the matdi®’ = {®¢, ®*}. The result
follows from the following propositon.

Proposition A.1.Let A = (a;;) be a skew-symmetric matrix where<li, j < n, andn is
an even number, and & = (b;;) be a symmetric matrix defined by; = b;b;, b;, b; € R,
1<, j <n. We deduce that

|A+ Bl =A]|.
Proof. We have that
A+ Bl =Y (=1 (ara + b1be) (a2 + b2bo@) - * (@nony + bubowy)

o€eS,

|A| + Z Z( 1) b bU([)alO‘(l) am(l) * Upo(n)

i=1o€Ss,

+ > D (D bibaiiybibo(in@1s) Gty Gien * Gnotm

il,i2=l,...,n,[1<[2 UES,,
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+-+ > D (=D bisbogiy -+ by boti, 0t
i1,ein—1=1,...,0,i1<-<iy_1 CES,
+ > (=1 baboq) -+ bubg) -
€S,

All the terms, with exception of the first and second ones, are trivially equal to zero.
Therefore

|A+ Bl =|A|+ ) bi(-1)*" <Z(_1)U(_ba(l))ala(2) i1 () itloGi+D) " 'ana(n))
i—1

€S,

= |A|+C]

whereC is the skew-symmetric matrix defined byy = 0, c1j = bj_1 (j > 2), ci1 = —bi—1
(i > 2)andc;; = aj—1 ;-1 (i, j > 2). SinceC is a skew-symmetric matrix of odd order,
then|C| = 0. Thus,|A + B| = |A|. O
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